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Abstract
We study single-flip dynamics in sets of three-dimensional rhombus tilings
with fixed polyhedral boundaries. This dynamics is likely to be slowed down
by so-called ‘cycles’: such structures arise when tilings are encoded via the
‘partition-on-tiling’ method and are susceptible to break connectivity by flips
or at least ergodicity, because they locally suppress a significant amount of
flip degrees of freedom. We first address the so-far open question of the
connectivity of tiling sets by elementary flips. We prove exactly that sets of
tilings of codimension 1 and 2 are connected for any dimension and tiling size.
For higher codimension tilings of dimension 3, the answer depends on the
precise choice of the edge orientations, which is a non-trivial issue. In most
cases, we can prove connectivity despite the existence of cycles. In the few
remaining cases, among which one is the icosahedral symmetry, the question
remains open. We also study numerically flip-assisted diffusion to explore the
possible effects of the previously mentioned cycles. Cycles do not seem to slow
down significantly the dynamics, at least as far as self-diffusion is concerned.

PACS numbers: 61.44.Br, 02.10.−v, 02.40.−k, 45.05.+x

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Rhombus tilings in dimensions 2 and 3 have been an interdisciplinary subject of intensive study
in the last two decades, both in theoretical solid-state physics because of their strong relation
with quasicrystals [1–3], as well as in theoretical computer science or in more fundamental
mathematics [4–10]. Rhombus tilings are coverings of a portion of Euclidean space, without
gaps or overlaps, by rhombi in dimension 2 and rhombohedra in dimension 3. The ‘cut-and-
project’ process is a standard method [2, 11] to generate such tilings. It consists in selecting
sites and tiles in a D-dimensional cubic lattice and in projecting them onto a d-dimensional
subspace with D > d; d is the dimension of the tilings and the difference D − d is usually
called their codimension. The class of symmetry of a tiling is related to D and d and such tilings
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will be denoted by D → d tilings. Icosahedral tilings that are widely studied in quasicrystal
science, are 6 → 3 tilings of codimension 3. We consider in this paper three-dimensional
tilings of codimensions ranging from 1 to 4. We also make incursions in the general D → d

case whenever possible.
The ‘generalized partition’ method used in this paper to generate tilings is a variant of the

previous one which has proven useful in several circumstances to manipulate and count them
[7, 12–17]. The principles of the method will be recalled below. However, we should already
mention that the tilings generated by this technique have specific fixed boundaries. They are
polygons in dimension 2 and polyhedra in dimension 3, all of them belonging to the class of
zonotopes [18].

As compared to perfect quasiperiodic rhombus tilings, such as the celebrated Penrose
tilings [4], the so-called ‘random tilings’ [3] have additional degrees of freedom, the localized
phasons or elementary flips, which consist of local rearrangements of tiles (groups of four
tiles in dimension 3). The activation of these degrees of freedom gives rise to a large amount
of accessible configurations which are responsible for a macroscopic configurational entropy,
the calculation of which is in itself a difficult topic that the present paper does not address
directly.

Among the many problems that remain unsolved in this field, results on flip dynamics
are scarce in three dimensions [10, 19–23] and are either purely numerical or based upon an
approximate Langevin approach. And yet it is a crucial issue in quasicrystal science where
elementary flips are believed to play an important role because they are a new source of atomic
mobility. They could bring their own contribution to self-diffusion [24] in quasicrystalline
alloys and they are involved in some specific mechanical properties, such as plasticity related
to dislocation mobility [25] (see section 7.1 for a more detailed discussion).

The present paper addresses two issues related to flip dynamics: connectivity of tiling sets
via elementary flips and self-diffusion (of vertices) in random tilings when flips are activated.

The question of the connectivity of tiling sets via elementary flips still resists investigation
in spite of the apparent simplicity of its formulation: Is it possible to reach any tiling from any
other one by a sequence of elementary flips? Even if proving that tiling sets are connected
via elementary flips is only a first step towards the full characterization of flip dynamics, it
is a challenging question that must imperatively be addressed before tackling more complex
issues such as ergodicity, self-diffusion, calculation of ergodic times [26, 10] or dislocation
mobility. This connectivity issue is also crucial in the context of Monte Carlo simulations
on tilings: it is a fundamental ingredient if one hopes to sample correctly their configuration
spaces.

So far, connectivity has only been conjectured by Las Vergnas about 25 years ago in the
context of ‘oriented matroid theory’ [27]. It remains an open problem in pure mathematics
([28], question 1.3). In two dimensions, connectivity can be established [5, 6], but the proofs
are very specific to dimension 2 and cannot be adapted to dimensions 3 and higher. In [16],
a new proof of the connectivity in dimension 2 was proposed and the reason why this proof
could not be easily extended to higher dimensions was clearly identified: there appear ‘cycles’
(defined below) in the generalized partition method which locally suppress a fraction of flip
degrees of freedom. It is this point of view that we shall adopt in the present paper: we
shall demonstrate that the obstacles to the generalization of the latter proof can be rigorously
bypassed in many cases: in codimensions 1 and 2; in most cases in codimensions 3 and 4. We
say ‘most cases’ because a new difficulty arises when one studies three-dimensional rhombic
tilings: for a given codimension, all edge orientations are not equivalent. There are four non-
equivalent edge orientations in codimension 3 and 11 in codimension 4. The paper discusses
this non-trivial issue in great detail. There is a minority of edge orientations where we are
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not able to prove connectivity. Note that when all edge orientations are not combinatorially
equivalent, the corresponding polyhedral fixed boundaries are not topologically equivalent
either. This point will also be discussed in detail in the paper.

Beyond connectivity, the previously mentioned cycles are likely to affect ergodicity. Since
they suppress some flip degrees of freedom, they are susceptible to slow down the dynamics
and to be responsible for entropic barriers which could, for instance, prevent a tile from finding
its average equilibrium position in the tiling. We have chosen to study self-diffusion of vertices
to explore such possible effects because of its physical interest. Self-diffusion has previously
been studied in icosahedral tilings [21–23] but the effect of cycles themselves has never been
investigated. We shall see that there are no significant differences in the diffusive behaviour
between tilings where cycles exist and those where we are able to prove that they cannot
exist, nor between tilings where connectivity can be proven and those where it remains open.
No sub-diffusive regimes at long time are observed whatever the tilings under consideration.
Cycles do not seem to slow down the dynamics, at least as far as self-diffusion is concerned.

The paper is organized as follows. In section 2, we describe the ‘generalized partition’
method used throughout the paper to code the tilings and we explain how ‘cycles’ emerge in
this formalism. In section 3, we set the basics of flip dynamics, and we discuss the possible
influence of cycles on the dynamics by flips. Section 4 discusses the question of non-equivalent
edge orientations and related fixed boundaries. In section 5, we give our main theorem that
states that cycles cannot exist in favourable conditions, which enables us to prove connectivity
by flips in a large variety of cases. When cycles exist, we also study how abundant they are and
we derive a simple mean-field argument to account for our observations. In addition, we make
a brief incursion into order theory: we prove that the tiling sets have a structure of ‘graded
poset’. In section 6, we discuss how our results on fixed-boundary tilings can be transposed
to the more physical free-boundary ones. Finally, section 7 is devoted to a numerical study of
the diffusion of vertices. The section 8 contains conclusive remarks and open questions.

2. Tilings, generalized partitions and cycles

In this section, we present the concept of generalized partition used in the paper to code and
manipulate rhombus tilings. This technique was introduced in [12–14], developed in [15, 16]
and mathematically formalized in [7]. The end of the section is devoted to the definition of
cycles. We provide a commented example.

2.1. Generalities

The rhombus tilings considered in this paper (see an example in figure 1), whatever their
dimension, have D possible edge orientations (belonging to R

d ), denoted by ea , a = 1, . . . , D.
They are inherited from the D directions of the cubic lattice of R

D during the ‘cut-and-project’
process. Each possible edge has the orientation and norm of one of the vectors ea . The signs
of these vectors ea are irrelevant and can be arbitrarily chosen. A rhombic tile is defined by d
of these edge orientations. To avoid flat tiles, the family of orientation vectors is supposed to
be non-degenerate: any d of them form a basis of R

d .
A dual representation of rhombus tilings was introduced by de Bruijn [29, 30]. It consists

in seeing the tiling as a grid of lines (see figure 2, right). A line in a tiling is a succession
of adjacent tiles sharing an edge (in dimension 2) or a face (in dimension 3) with a given
orientation. It is always possible to extend these lines through the whole tiling up to a
boundary tile. These lines are called ‘de Bruijn lines’. In dimension 3, one can also define
de Bruijn surfaces which can be represented by adjacent tiles sharing an edge with a given
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Figure 1. Unitary 6 → 3 tiling with icosahedral symmetry. Shaded tiles form the de Bruijn
surface attached to the edge orientation e1 equal to ez in this figure. This de Bruijn surface can be
seen as a (mono-valued) function from (xOy) = R

2 to (Oz) = R. It is topologically equivalent
to a 5 → 2 tiling with decagonal boundary.
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Figure 2. Example of generation of a 4 → 2 tiling by the generalized partition method. Left:
order relation between the tiles of a base 3 → 2 tiling t̃ . Right: one solution of this generalized
partition problem codes a 4 → 2 tiling. The tiles of the de Bruijn family F4 are shaded. The
remaining white ones belong to the base tiling t̃ . The domains D0,D1 and D2 appear as the tiles
bearing parts equal to 0, 1 and 2 respectively. They are separated by the two de Bruijn surfaces of
the family F4. From [16].

orientation ea (see figure 1). They will play an important role below. There exists one family
of surfaces, denoted by Fa , for each orientation ea of edges. There are pa surfaces in the
family Fa . De Bruijn surfaces of the same family do not intersect. A tiling with D orientations
of edges on a d-dimensional space will be called a D → d tiling, and D − d defines its
codimension. In dimension d, the de Bruijn surfaces are replaced by (d − 1)-dimensional
hyper-surfaces.

In this paper, we will mainly be interested in the case d = 3, and we shall use two-
dimensional tiling examples to facilitate the comprehension. In dimension 3, a rhombic tile is
given by the intersection of three surfaces of different families, and so all the different types
of tiles are given by all the possible intersections of three surfaces of different families; there
are

(
D

3

)
different species of tiles. We can prolong any de Bruijn surface of family Fa beyond

the tiling boundaries and up to infinity, by a surface perpendicular to the direction ea far from
the tiling. If the tiling corresponds to a complete grid, which means that any three surfaces
of different families have a non-empty intersection, it will have fixed boundary conditions.
More precisely, this boundary will be a zonotope [18], that is to say the shadow of the hyper-
cube of sides (p1, p2, . . . , pD) in the D-dimensional space onto the d-dimensional space,
where we recall that the pa are the numbers of hyper-surfaces in family Fa . We shall describe
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more precisely this kind of boundaries in section 4 and we shall discuss their relationship with
free boundaries in section 6.

Here we make an important remark about de Bruijn surfaces: a (d − 1)-dimensional
de Bruijn surface S in a D → d tiling td is topologically equivalent to a D − 1 → d − 1
tiling. For example, a de Bruijn surface in a three-dimensional tiling can also be seen as a
two-dimensional tiling. Indeed, let us consider the trace on S of the d-dimensional de Bruijn
grid dual of td : it is a grid made of D − 1 families of (d − 2)-dimensional surfaces. This
grid is complete because the original grid is. It is the dual of a D − 1 → d − 1 tiling with
fixed zonotopal boundaries. In figure 1, a de Bruijn surface is represented. The equivalent
two-dimensional rhombus tiling is obtained by looking at the surface from the direction ez.

A tiling will be called ‘unitary’ if it contains one de Bruijn surface per family (pa = 1 for
all a). It will be called ‘diagonal’ if it contains the same number of de Bruijn surfaces in each
family (pa = p for all a).

2.2. Generalized partitions

Here we introduce the notion of generalized partitions which plays a central role in the paper.
We also explain how an edge orientation ea orients the faces of a tiling. This notion will be
fundamental in the proof of connectivity.

The idea of the generalized partition method is to build iteratively the tiling, by
reconstructing the dual grid. In dimension 3, beginning with a complete grid made by
only three families of surfaces, which is unique and represents a 3 → 3 periodic tiling made
by one type of tiles, we have to describe where to place the de Bruijn surfaces of the fourth
family F4 relative to the existing intersections of three surfaces. In terms of tilings, it means
that we have to describe where to place the fourth surfaces of tiles on the existing 3 → 3
tiling. And iteratively, to build a D + 1 → 3 tiling, we have to describe where to place the
family FD+1 of surfaces on a previously obtained D → 3 tiling. In order to obtain a tiling
by this process, we have to impose some constraints on the way we place the next family
of surfaces at each step. The surfaces of one family cannot intersect. No more than three
surfaces can cross at the same point, otherwise the tile at this point cannot be properly defined.
Furthermore, de Bruijn surfaces are directed [15]. Indeed, by construction, they always cross
edges with a given orientation, and can be seen as mono-valued functions R

d−1 → R defined
on the hyper-plane perpendicular to their orientation vector ea (see figure 1).

Let us now introduce (see figure 2) how one can define a partial-order relation between
the tiles of a tiling in order to satisfy these constraints. Since the pa de Bruijn surfaces of a
family Fa do not intersect, they divide the space R

d in pa + 1 disjoint domains. Furthermore,
since de Bruijn surfaces are globally oriented, we can index these domains from 0 to pa such
that, following the direction given by ea , we go through all these domains in an increasing
order. We denote these domains by D0, . . . , Dpa

and the surfaces of Fa by S1, . . . , Spa
.

The de Bruijn surface Sk lies between the domains Dk−1 and Dk . In other words, if we
consider a tiling t, and if we particularize the de Bruijn surfaces of the family Fa (see figures
1 and 2), tiles not belonging to the surfaces of Fa are distributed between the different
domains.

Now we contract (or delete) the tiles of Fa from the D + 1 → d tiling t by setting the
length of ea to 0, thus obtaining a D → d tiling t̃ . Two adjacent tiles of t̃ , with one above the
other along the direction ea , are either on the same domain Dk or separated by one (or several)
de Bruijn surface of Fa , the tile atop being in the higher domain. This allows us to define an
order relation, �a , relative to Fa , between any two adjacent tiles u and v in t̃ : u �a v means
that u is below v along ea and so that u is either in the same domain as v or in a lower domain.
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Figure 3. Example of nine-tile cycle in a base unitary 6 → 3 tiling with one de Bruijn surface
in each family. We have only drawn nine tiles belonging to the cycle where the tiling contains
20 tiles. Such cycles already exist in 5 → 3 tilings but the examples we know contain more tiles
than the present one. The tiles are added to the cycle one by one. The edge orientation e7 which
orients the tiling is perpendicular to the picture plane and points upwards. As a consequence, given
two adjacent tiles u and v separated by a tiling face, u is just above v with respect to the order
relation between tiles if u is above v in the figure, in other words if u hides partially v (the face of
u that will be covered by v is marked by a dot). Each tile of the cycle is above the preceding one
and the last tile is below the first one, which loops the cycle. Note that this cycle can be broken by
flipping the four bottom tiles that form a rhombic dodecahedron.

We can recover this order relation between any adjacent tiles by orienting all the faces1

of a tiling t̃ by ea: given two adjacent tiles u and v of t̃ , u �a v if when one goes from u to
v, the face between u and v is crossed in the positive direction (see figure 3). We say that the
vector ea orients the faces of t̃ .

1 In this paper we call face of a tile a (d − 1)-dimensional polyhedron generated by d − 1 orientation vectors.
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Now recall that our aim is to code the position of the de Bruijn surfaces of FD+1 on a
D → 3 tiling t̃ . One way to do that, is to associate an integer Xu, 0 � Xu � pD+1, called a
part, with each tile u of the tiling t̃ : Xu is equal to the index k of the domain Dk the tile u
belongs to. For example, one tile with a part equal to 3 is on the third domain, so between
the second and the third de Bruijn surface of the family FD+1; a tile with a part equal to zero
is below the first surface. These parts have to respect the partial relation order �D+1, which
for convenience we will simply denote by � in the following. To generate all the possible
D + 1 → 3 tilings from a D → 3 one, we have to find all the possibilities of filling the tiles of
the latter tiling by parts from 0 to pD+1 respecting the partial order between the tiles. This type
of problem is called a generalized partition problem of height pD+1 on the D → 3 tiling. A
solution of this problem is called a (generalized) partition. In figure 2, one can see an example
of a 4 → 2 tiling coded by a generalized partition on a 3 → 2 tiling. The underlying tiling t̃

is called the base tiling of the generalized partition problem.
To sum up, there is a one-to-one correspondence between D + 1 → 3 tilings and pairs

composed of a base D → 3 tiling together with a generalized partition on this base tiling.
This one-to-one coding of zonotopal tilings is described in a more formal way in [7, 16]. It
can be iterated by induction on D to code D → 3 tilings, starting from the simplest case of
partitions on 3 → 3 tilings. The latter can be seen as three-dimensional rectangular arrays
and the corresponding partition problems are usually called solid partition problems [15].

To close this section, let us remark that when one codes D + 1 → 3 tilings by the
generalized partition technique, the order in which the de Bruijn families of surfaces are
successively added to the tilings is arbitrary. For the sake of convenience, one is, for example,
free to choose the D first edge orientations defining the base tilings among the D + 1 possible
ones. Of course, the set of base tilings depends on this choice.

2.3. Definition and examples of cycles

We can now define what we call a cycle on a base tiling [16]. A cycle is a succession of pairwise
adjacent tiles, u1, u2, . . . , un, u1, such that Xu1 � Xu2 � · · · � Xun

� Xu1 with respect to
the previous order relation on tiles, as it is illustrated in figure 3. This means that the parts of
the tiles inside the cycle have to be equal to a unique part X0 and have a collective behaviour.
In particular, their values cannot but change simultaneously. Such cycles are known to exist
on specific ad hoc 6 → 3 examples. The first one can be found in [31] (example 10.4.1) and
the second one in [32] (example 3.5), in the context of ‘oriented matroid theory’. Figure 3
provides another example. Our analysis below shows that cycles already exist in 5 → 3
tilings, but not in unitary ones. A base tiling with cycles is said to be cyclic, and conversely a
tiling without cycles is acyclic.

Geometrically speaking, a cycle is a sequence of tiles making a loop such that each
tile is placed above the preceding one relative to the orientation prescribed by eD+1. In the
example of figure 3 this vector is placed perpendicularly to the picture plane. This cycle can
be seen analogously to a loop of coins, each one placed above the preceding one. A visible
consequence is that we cannot place a de Bruijn surface of FD+1 between the tiles of the cycle,
as well as we cannot place a horizontal sheet of paper between the coins, splitting the loop
between coins above the sheet and below the sheet. A de Bruijn surface of FD+1 is either
completely above or completely below a cycle. This is equivalent to say that the tiles must
bear equal parts.

One of our purposes below is to analyse the occurrence of cycles in a more systematic
way. In addition, in the following, we will discuss the possible influence of these cycles on
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Figure 4. A two-dimensional flip inside a (not necessarily regular) hexagon involves three tiles,
and a three-dimensional flip inside a rhombic dodecahedron involves four tiles.
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Figure 5. The two types of flips on the 4 → 2 tiling of figure 2. Upper panel: type-I flip involving
three tiles none of them in the family F4. It only affects the base tiling but not the parts it bears.
Lower panel: type-II flip involving two tiles of the family F4 and one single tile u of the base tiling.
It changes the part Xu borne by u by ±1.

the configuration spaces of tilings and on flip dynamics. Let us emphasize that this problem
is specific to dimensions 3 and above, since there cannot exist cycles in dimension 2 [31, 32].

3. Basics of flip dynamics

Before discussing in further detail the consequences of these cycles, we now describe flips in
rhombus tilings, and what they become in the generalized partition viewpoint.

One can define in rhombus tilings local degrees of freedom which are called elementary
flips or localized phasons. In dimension d, a flip consists of a local rearrangement of d + 1
tiles in a small zonotope inside the tiling. In dimension 2 it is a rearrangement of three
tiles inside a hexagon, and in dimension 3, of four tiles inside a rhombic dodecahedron, see
figures 4 and 5. In dimension 2 the configuration space of tilings is proven to be connected
via these elementary flips [5, 6, 16]. It means that we can go from any tiling to any other one
by a finite sequence of flips. In dimension 3, it is an open question that we shall address in
this paper.

Flips allow one to define a Monte Carlo Markovian dynamics on tiling sets as follows
[19, 33]: pick up a tiling vertex at random with uniform probability. If this vertex is flippable
(it is surrounded by d + 1 tiles in dimension d), then flip it. This Markovian process converges
towards the uniform distribution on the set of tilings provided the configuration space is
connected by flips. Note that temperature can be introduced in this point of view to take into
account possible interactions between tiles; the transition rates must be adapted consequently.
In this paper, we focus on the infinite temperature limit, where all the configurations have
equal equilibrium probability and where all rates of allowed transitions are equal.
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Flip

Figure 6. Configuration space of 4 → 2 tilings of an octagon of sides (2, 1, 1, 1). There are 20
tilings represented by vertices. Tilings are linked by an edge if they differ by a single flip. In the
generalized partition formalism, the 20 tilings can be distributed among three fibres according to
their base tiling. The three possible 3 → 2 base tilings are represented in the figure. One can
see type-I (inter-fibre) flips and type-II (intra-fibre) flips. If one particularizes a different edge
orientations from the fourth family of lines, the fibration is different. There are four different
fibrations corresponding to the four edges ea . We have represented two of them (fibres drawn in
full and dotted lines, respectively).

This Markovian dynamics has been mainly studied in dimension 2. It has been
demonstrated that it is rapid in codimensions 1 [34] and 2 [26]. This means that the typical
times to reach equilibrium are polynomial in the system size. The same kind of result has
also been established numerically in the 4 → 3 case [10]. In addition, there exist studies
concerning diffusion in random tilings evolving via this Markovian dynamics. This last point
will be discussed in great detail in section 7.

Now, let us see how these flips are seen in the generalized partition point of view. On a
generalized partition problem on a D → d tiling, which codes a D + 1 → d tiling, flips can
be classified into two types (see figure 5), following [16].

Type-I flips involve only tiles of the base D → d tiling and no tile of the de Bruijn family
FD+1. As a consequence, the d + 1 tiles bear equal parts, and these flips only change the base
tiling without modifying the parts of the tiles. Type-II flips involve tiles belonging to the de
Bruijn family FD+1. More precisely, they involve d tiles having an edge oriented by eD+1,
locally representing a surface of the family FD+1, and one tile u of the base tiling. Such a flip
consists in modifying the position of the latter surface with respect to the tile u. So it changes
the part Xu borne by the tile u by ±1.

One can now build a schematic picture of the configuration space of tilings [16] (see
figure 6). Considering D + 1 → d tilings, one can split up the configuration space into disjoint
fibres. A fibre contains all the tilings generated by the same generalized partition problem,
that is to say which have the same base tiling. Type-II flips keep the base tiling, and therefore
the fibre, unchanged, whereas type-I flips change the base tiling and therefore the fibre. The
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Figure 7. Schematic picture of a configuration space where fibres can be disconnected because of
the possible occurrence of cycles. Some fibres are connected if they are associated with acyclic
base tilings, some are not. This configuration space is more intricate than that of figure 6 and its
overall connectivity is not acquired any longer. In particular in this figure, if the flip represented
by the thick line is suppressed, the connectivity fails, the space is split into two components.

set of all fibres is called a fibration. For a given configuration space, there are D + 1 different
fibrations corresponding to the choice of eD+1 among the D + 1 edge orientations.

Using this picture, one immediately gets the following result: if fibres are all connected
and if the base is connected itself, then the configuration space is connected in its turn. Indeed,
the connectivity of fibres allows one to put all the tiles of the D → d tiling to the same part
value (for example 0), thus releasing all type-I flips on the base tiling and allowing one to go
to any fibre.

Now it is established in appendix B that a fibre corresponding to an acyclic base tiling
is connected, because it is possible to change the parts on tiles one by one. Therefore if all
base tilings are acyclic and if the base is connected, then the configuration space is connected
in its turn. Since there cannot exist cycles in dimension 2, sets of D → 2 tilings are always
connected [16]. We shall follow this route in the following to prove connectivity in a wide
variety of cases.

What happens when there are cycles? A cycle in a tiling is a sequence of pairwise
adjacent tiles that are geometrically constrained to bear the same part in the generalized
partition problem. In terms of flips, since all parts of the cycle are forced to be equal, the tiles
of a cycle cannot participate in a type-II flip which would change the part of a single tile to a
value different from that of the whole cycle.

In other words, a de Bruijn surface of FD+1 cannot pass through a cycle, because it is
constrained to be completely above or completely below the cycle. In order to allow the
surface to pass the cycle, one must break beforehand the cycle by type-I flips, if it is possible.
The tiling is locally jammed.

A direct consequence is that a fibre based on a tiling with cycles cannot be connected
anymore by single flips. We must modify our schematic picture of the configuration space:
there are connected fibres based on tilings without cycle, as well as disconnected ones based
on tilings with cycles. The connectivity is no longer obvious (see figure 7).

Let us anticipate in the following to emphasize that these cycles should have an influence
not only on the connectivity but also on the Markovian flip dynamics. Indeed they forbid
some type-II flips, they reduce locally the degrees of freedom related to those flips because
of jammed clusters of tiles. They are susceptible to slow down the dynamics, in the sense
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of an increase of ergodic times. In the schematic picture of figure 7, one can see that the
cycles make the configuration space more intricate. One can imagine that they could create
inhomogeneities in the distribution of flip paths through the phase space resulting in entropic
barriers. More precisely, in [26], the demonstration of short ergodic times in dimension 2 was
based on short ergodic times inside the fibres, which is not possible anymore in the presence
of cycles. Therefore, one can wonder whether the features of the dynamics are modified by
those cycles. It will be the purpose of section 7.

4. Edge orientations, line arrangements and boundaries

Before tackling the questions of connectivity and vertex diffusion, this section clarifies the
question of non-equivalent edge orientations in three-dimensional tiling problems and their
relation with zonotopal boundaries. Indeed, it will appear in the following that the existence (or
not) of cycles in base tilings is closely related to the choice of edge orientations. In particular,
we shall be able to prove connectivity by flips for a large majority of edge orientations, but the
proof will fail in some minority cases. The classification of edge orientations will be related
to a classification of line arrangements in the projective plane PR

2.

4.1. Edge orientations and equivalence relation

Random tiling model studies concern the way of arranging simple geometrical structures (the
tiles) in the space or in the plane. One possible interest is the contribution to the entropy
of such possible configurations. Here we are interested in the way the system can go from
one of those configurations to another. The geometry of the tiles does not concern directly
those features but rather the symmetries. Indeed, one can imagine to start with a tiling and
begin to vary slightly one vector ea . It will deform globally the tiling, but not its topological
structure in terms of relative positions of the tiles. More precisely, vectors ea can be rotated
or elongated provided a modified vector does not cross a plane made by two other ones, which
means that there exist no flat tiles and no tiles are overlapping.

Given two families of D edges, denoted by f = (e1, . . . ,eD) and f ′ = (e′
1, . . . ,e

′
D),

we define them as equivalent [35] if one can transform f into f ′ by the composition
of the three following transformations: (i) permutation of the indices; (ii) sign reversals;
(iii) continuous deformation of the vectors ea without creating degenerate configurations of
three vectors: det(ea1 ,ea2 ,ea3) �= 0 for all (a1, a2, a3). In dimension 2, all families of D edges
are equivalent. When the families f and f ′ are equivalent, we say that they define equivalent
sets of rhombic tiles.

4.2. Line arrangements

To distinguish and enumerate the non-equivalent families of edge orientations, we map families
of edges on line arrangements in the projective plane PR

2 (see [35] for more details). We
proceed as follows. The set of edges are represented by a family of D vectors (e1, . . . ,eD).
Recall that the signs of those vectors are irrelevant. Those families of vector arrangements
are in bijection with arrangements of planes (H1,H2, . . . ,HD), such that for all a,ea is
orthogonal to Ha and each Ha contains the origin. For one given arrangement, since all the
planes pass through a common point (i.e. the origin), one can get all the information on it by
its trace on the projective plane PR

2 (which is conveniently represented by an affine plane that
does not contain the origin. Then this trace is made of lines (L1,L2, . . . ,LD) defined as the
intersections of the projective plane and the Ha). So, one can differentiate vector arrangements
by differentiating the line arrangements in the projective plane.
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Figure 8. Equivalence classes of line arrangements in the projective plane [36]. These line
arrangements are put in the text in bijection with edge orientations and three-dimensional zonotopal
boundaries. There are respectively 1, 1, 4 and 11 arrangements of 4, 5, 6 and 7 lines. The first
arrangement of six lines corresponds to the icosahedral symmetry.

We specify now, from the line arrangement point of view, what equivalence of edge
orientations become. Two line arrangements with D indexed lines will be equivalent if
they only differ by a re-indexation of the lines and continuous geometric transformations
on the lines which do not create triple points, because a triple point corresponds to three
coplanar vectors ea,eb, ec. The equivalence classes of line arrangements in the projective
plane, from four to seven lines, are given by Grünbaum [36] and are displayed in figure 8.
We use in the following the indexation of line arrangements of this figure 8. There exists
only one arrangement of four and five lines, whereas there exist four arrangements of
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Figure 9. Two topologically different boundaries of (unitary) 6 → 3 tilings. The left one
corresponds to the icosahedral symmetry and the right one to the fourth arrangement of six lines.
On the left one, we have represented the trace of two de Bruijn surfaces on the boundary by two
black lines. By drawing the lines corresponding to all the de Bruijn surfaces on this boundary, one
builds an arrangement of lines which can be stretched and one obtains the first six-line arrangement.
A visible difference between these two boundaries is the connectivity of each vertex. On the right
boundary there exists a vertex with six edges which is absent on the left one. This vertex of
connectivity 6 is represented by an irregular hexagon in the fourth six-line arrangement.

six lines and eleven arrangements of seven lines, which correspond to as many different
4 → 3, 5 → 3, 6 → 3 and 7 → 3 random tiling problems. The icosahedral symmetry
belongs to the equivalence class of the first arrangement of six lines.

4.3. Polyhedral boundaries

In the following, we study the presence of cycles in tilings associated with all those line
arrangements. But let us first discuss how those line arrangements are related to the boundary
of the tilings we are considering.

The boundary of the tiling generated by the partition-on-tiling method is the boundary of
the Minkowski sum of the vectors ea ,

Z =
{

D∑
a=1

αaea, αa ∈ R, 0 � αa � pa

}
, (1)

which is also called the zonotope generated by the vectors (e1,e2, . . . ,eD) [18, 15] (in
dimension 2, this zonotope is always a 2D-gon of sides (p1, . . . , pD), which is reminiscent
of the uniqueness of edge orientations). Zonotopes are convex and centro-symmetric. This
boundary is uniquely determined by the choice of the edge configurations, and thus by the
choice of the line arrangement in dimension 3. One can directly see this line arrangement
by seeing one hemisphere of the boundary of a unitary tiling projected on a plane (see
figure 9). The corresponding line arrangement is made by the line crossing each family of
edges. The projection of the boundary hemisphere can be seen as a D → 2 tiling and the
previous line arrangement can be seen as its de Bruijn grid. These lines are not straight but
they can be stretched without changing the crossing topology. Indeed this line arrangement
can also be seen as the trace on the projective plane of de Bruijn grid dual of a D → 3 tiling
filling the zonotope. By definition, the boundary does not depend on the tiling inside this
boundary. The line arrangement corresponding to the boundary can always be seen as the
trace of the dual de Bruijn grid made by flat de Bruijn surfaces, which always represents a
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Table 1. Number of tilings in the configuration spaces of unitary 6 → 3 tilings as a function of the
line arrangement. These results have been computed by entirely spanning the configuration space
numerically.

Unitary 6 → 3 tiling space

Line arrangement 1 2 3 4
Number of tilings 160 148 144 148

Table 2. Number of tilings in the configuration spaces of unitary 7 → 3 tilings as a function of
the line arrangement.

Unitary 7 → 3 tiling space

Line arrangement 1 2 3 4 5 6 7 8 9 10 11
Number of tilings 7686 8260 7624 7468 7220 7690 7518 7242 7106 6932 6902

possible tiling. In figure 9, one can see two tiling boundaries corresponding to the icosahedral
tiling and to the fourth line arrangement with six lines. In particular, these two boundaries
differ by the existence of a vertex of connectivity 6 on the right-hand side one. This is seen
in the dual fourth line arrangement by the presence of one hexagon. By contrast, the total
number of tiles NT does not depend on the choice of the boundary because the de Bruijn grid
is complete:

NT =
∑

a<b<c

papbpc. (2)

To characterize the differences between random tilings with non-equivalent edge
orientations, we have enumerated tilings with unitary boundaries (i.e. with one de Bruijn
surface per family), see tables 1 and 2 . For unitary tilings it is possible to span the entire
configuration space for each boundary condition. Indeed, we demonstrate in the following
that the configuration space of all the random tilings with unitary boundaries is connected
for codimensions up to 4 which are of interest in the present paper. These results, which are
exact, show definitively that tiling problems with non-equivalent families of edge orientations
cannot be put in one-to-one correspondence since they do not have the same number of
configurations. There are 160 unitary tilings built on the first six-line arrangement, that is to
say with icosahedral symmetry.

5. Connectivity and structure of the configuration space

This section contains results concerning the configuration space of three-dimensional tilings.
First we formulate our main theorem in section 5.1. It gives a general sufficient condition
to prove that base tilings are acyclic. We apply this result to dimension 3 in section 5.2
to prove that most line arrangements in codimension up to 4 generate connected tiling sets.
Then we considerer in section 5.3 the opposite situation where cycles exist and we study how
abundant they are. A mean-field argument supported by numerical simulations shows that,
in this case, cyclic tilings are generic and acyclic ones are exceptional at the large size limit.
Then in section 5.4 we characterize the structure of the configuration space in the frame of
order theory.
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5.1. Connectivity: main theorem

The results of this subsection are not specific to dimension 3 and can easily be adapted to any
D → d tiling problem. However, for the sake of simplicity, we shall write our theorem and
its proof in dimension 3. Our goal is to give a sufficient condition to prove that base tilings
are acyclic.

We consider a D + 1 → 3 tiling problem defined by a family f = (e1, . . . ,eD+1) of
edge orientations. The set of all the possible tilings of this tiling problem is denoted by T .
Tilings of T are coded by generalized partitions on base tilings defined by the D first edge
orientations and the faces of which are oriented by eD+1. The set of base tilings is denoted by
T̃ . To formulate our main theorem, we first need to introduce some new notions.

First of all, we say that the family f = (e1, . . . ,eD+1) is acyclic if any D → 3 base tiling
(of any size) of edges f̃ = (e1, . . . ,eD), the faces of which are oriented by eD+1, is acyclic.

A family of D indices (qa), a = 1, . . . , D, is attached to each tile u of a base D → 3
tiling t̃ as follows. For each family of de Bruijn surfaces Fa , if u belongs to a surface Sk of Fa ,
then the index qa(u) is equal to k. If u lies between the surfaces Sk and Sk+1, in the domain
Dk , then qa(u) is half-integer and is equal to k + 1/2. Let us remark that when we code a
D + 1 → d tiling, t, by a generalized partition on t̃ , the parts Xu on each tile of t̃ correspond
to the domain, defined by the family FD+1 they belong to: for the tiles u of t̃ in t, we have
qD+1(u) = Xu + 1/2.

For each a, qa defines a function on the partially ordered set of the tiles. We say that qa is
monotonous increasing if given any two tiles u and v, if u � v then qa(u) � qa(v). Note that
we can, in a similar way, define the notion of monotonous decreasing qa , which is equivalent
to the previous one up to a sign reversal of ea .

We also define companion vectors in the family f : any two vectors ea and eb in f are said
to be companion if either ea and eb orient equivalently all the faces made by the remaining
vectors of f − {ea,eb}, or ea and −eb do.

We shall prove below the following lemma:

Lemma. If ea and eD+1 are companion vectors in the family of edge orientations f , then the
function u �→ qa(u) is monotonous (increasing or decreasing).

As a consequence, in this case, qa cannot but be constant along a cycle. Therefore a
cycle either lies entirely in a single de Bruijn surface of Fa (if qa is an integer) or strictly lies
between two of them (if qa is half-integer). In the first case, the cycle lives in the equivalent
of a D − 1 → 2 tiling (see section 2.1), and in the second case in a D − 1 → 3 tiling of
edge orientations (e1, . . . ,ea−1,ea+1, . . . ,eD). We already know that cycles do not exist in
any D − 1 → 2 tiling. Therefore if we can prove inductively that cycles cannot exist in the
D − 1 → 3 tilings (in other words that f − {ea} is acyclic), we get that they cannot exist in
base D → d tilings of interest. We are led to our main theorem:

Main theorem. Given a family of D + 1 three-dimensional edge orientations f =
(e1, . . . ,eD+1), if there exists a vector ea in f companion of eD+1, and if the family f − {ea}
is acyclic, then f is acyclic in its turn.

This theorem will be used in the following subsection as follows: we shall prove that
some families of edges are acyclic, proceeding by induction on their numbers of vectors.
Connectivity of all fibres in the fibration corresponding to eD+1 will follow. If in addition we
know that the set T̃ of base tilings is connected, we shall get the connectivity of the whole set
of tilings T .
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To finish with, we prove our first lemma. We prove that if ea and eD+1 orient equivalently
all the faces made by the remaining vectors, then qa is monotonous increasing. We could
prove in a similar way that if ea and −eD+1 orient equivalently all the faces made by the
remaining vectors, then qa is monotonous decreasing.

To establish the monotony of qa , on all the tilings based on the family f − {eD+1}, we
consider two adjacent tiles u and v such that u � v (i.e. u �D+1 v). Three cases may occur:
(i) u and v belong to two different de Bruijn surfaces of family Fa . Since u � v, and ea

companion of eD+1, v is above u along the direction ea , then qa(v) = qa(u) + 1; (ii) u belongs
to a de Bruijn surface of Fa and v belongs to a domain Dk between two such surfaces; or u
belongs to such a domain and v belongs to a de Bruijn surface. In both cases, for the same
reasons as in (i), qa(v) = qa(u) + 1/2; (iii) u and v belong to the same domain Dk or to the
same de Bruijn surface Sk: qa(v) = qa(u). Therefore, in all cases, qa(u) � qa(v), which
proves monotony.

5.2. Connectivity in dimension 3

We now exhibit a criterion to identify companion vectors in the line arrangements in the
projective plane corresponding to families of three-dimensional edge orientations. Since any
vector in f can a priori play the role of eD+1, we seek any two companion vectors in f .

In order to find companion vectors, we represent the projective plane by the unit 2-sphere
S2 on which antipodal points are identified. The lines on PR

2 are now represented by great
circles �a on S2, such that �a lies in a plane perpendicular to ea . This circle separates S2 into
two hemispheres. We define a positive hemisphere �+

a and a negative one �−
a such that ea

points from �−
a to �+

a .
Here we denote by Fcd the face species that is defined by the vectors ec and ed . It is

represented in S2 by the two intersections of the circles �c and �d , denoted by γ
(1)
cd and γ

(2)
cd .

These points are identified in PR
2.

Now we prove that a face Fcd , where c and d are different from a and b, is oriented
equivalently by ea and eb if and only if γ

(1,2)
cd belongs to �+

a ∩ �+
b or �−

a ∩ �−
b .

We assign the orientation of Fcd by ea , by a unitary vector ncd , normal to Fcd , and
crossing Fcd in the same direction as ea , that is to say ncd · ea > 0. In other words, ncd ∈ �+

a .
We obtain in the same way that ncd ∈ �+

b , since ea and eb orient equivalently Fcd . Now, by
definition, ncd is unitary and is perpendicular both to ec and ed . Thus it coincides with γ

(1)
cd

or γ
(2)
cd . Hence γ

(1,2)
cd belongs to �+

a ∩ �+
b or �−

a ∩ �−
b .

Therefore two vectors ea and eb are companions if and only if all the points γ
(1,2)
cd with

c and d different from a and b belong to
(
�+

a ∩ �+
b

) ∪ (
�−

a ∩ �−
b

)
, or all of them belong to(

�+
a ∩ �−

b

) ∪ (
�−

a ∩ �+
b

)
(in the case where it is ea and −eb which orient equivalently all the

faces).
In practice, to find companion vectors one can use any hemisphere of S2 represented by

an affine plane to which we add the line at infinity. If this plane can be chosen so that all the
points made by the intersection of two lines different from La and Lb are on the same sides of
Lc and Ld , then ec and ed are companion vectors. An example is displayed in figure 10 (left).

The previous analysis can also be understood geometrically by considering one arbitrary
hemisphere of the boundary of a unitary tiling corresponding to a given arrangement, as
displayed in figure 10 (right). In this figure, the vector eD+1 is perpendicular to the figure
plane. It orients all the faces from bottom to top. Since the zonotope is convex, one can easily
check that in this representation, a companion ea of this vector is such that the arrangement
is completely situated on one side of the line La . Whereas a vector eb such that the line Lb

divides the arrangement into two non-empty parts cannot be a companion of eD+1. Indeed, if
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1
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7

Figure 10. Left: the tenth seven-line arrangement where we have represented two companion
lines, 1 and 7. All the intersections of any two remaining lines are on the same sides of these
companion lines. Right: one possible view of the corresponding boundary of this line arrangement.
The vector e1 (which orients the base tilings in this figure) is perpendicular to the plane of the
figure and points upward. The corresponding tiling edges cannot be seen in this figure. But one
can easily see that e7 is companion to e1: the trace of the seventh de Bruijn surface is represented
on this boundary by the bottom curve. It crosses edges borne by e7. One can check that, because
of convexity of the zonotopal boundary, the sign of e7 can be chosen so as to orient all the faces
which do not belong to the trace of the seventh de Bruijn surface from bottom to top as e1 does.
In contrast, the vector e4 is not companion of e1: the trace of the fourth de Bruijn surface is
represented by a line which splits the boundary into two non-empty parts. If the faces on the left of
this line are oriented from bottom to top by e4, it will orient those on the right from top to bottom.

Table 3. Results of the fits of fractions of cyclic tilings by 1 − (1 − α)10p3
. The 0 represents

fibrations where we proved that cycles cannot appear. The connectivity problems remain open for
the first arrangement (icosahedral symmetry).

Cycle abundance in 5 → 3 base tilings fitted by 1 − (1 − α)(
5
3)p

3

Six-line Particularized line λD+1

arrangement Connectivity
number 1 2 3 4 5 6 problem

α 1 1.32 × 1.32 × 1.32 × 1.32 × 1.32 × 1.32 × Open
10−6 10−6 10−6 10−6 10−6 10−6

α 2 0 0 0 0 0 0 Connected
α 3 0 0 0 0 0 0 Connected
α 4 0 0 0 0 0 0 Connected

eb orients the faces on the right of Lb from bottom to top, one can see that it orients the faces
on the left of Lb from top to bottom.

We have systematically applied this criterion on the line arrangements of figure 8 to
identify companion vectors, in order to apply inductively our main theorem. Tables 3
and 4 provide a summary of our investigations. For each line arrangement, in which the
particularized line λD+1 corresponds to the vector eD+1 orienting base tilings, a 0 indicates
that the corresponding family of edge orientations is acyclic. If for a given arrangement, there
exists a λD+1 for which it is the case, we can conclude that the configuration space is connected
after checking that the base is itself connected.

Conversely, there are arrangements for which we cannot find any pair of companion lines.
The first arrangement of six lines is an example. It means that we cannot state the absence
of cycles in any generalized partition based on this arrangement. Actually, we will see in the
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Table 4. Results of the fits of fractions of cyclic tilings by 1 − (1 − α)20p3
. The acronym ‘NA’

stands for non-available: in these cases, we found cycles but not enough for the reliability of the fit.
The connectivity problem remains open only for the second and the sixth line arrangements, since
for the others we can prove that at least one fibration cannot possess cycles. All configuration sets
of 6 → 3 base tiling problems are proven to be connected except the three ones written in bold
faces.

Cycle abundance in 6 → 3 base tilings fitted by 1 − (1 − α)(
6
3)p

3

Seven-line Particularized line λD+1

arrangement Connectivity
number 1 2 3 4 5 6 7 problem

α 1 0 0 0 0 0 0 0 Connected
α 2 NA 2.98 × 3.57 × 2.15 × NA 1.38 × 1.13 × Open

10−5 10−5 10−5 10−4 10−4

α 3 0 0 0 7.58 × 0 0 0 Connected
10−3

α 4 0 0 0 0 0 0 0 Connected
α 5 0 0 0 0 0 0 0 Connected
α 6 5.93 × 1.39 × 3.32 × 2.81 × 1.65 × 1.93 × 3.18 × Open

10−3 10−4 10−4 10−4 10−4 10−4 10−4

α 7 0 0 0 2.13 × 4.05 × 2.14 × 0 Connected
10−4 10−4 10−4

α 8 5.01 × 0 0 0 0 0 0 Connected
10−4

α 9 0 1.51 × 0 0 6.86 × 6.14 × 0 Connected
10−3 10−3 10−3

α 10 0 0 0 0 6.07 × 0 0 Connected
10−3

α 11 6.20 × 0 0 0 0 0 0 Connected
10−3

following that we do find cycles on these generalized partitions. In fact, for each arrangements
for which we cannot prove the absence of cycles we find them by numerical exploration, see
tables 3 and 4, and section 5.3. There exist only three arrangements (among 17) of at most
seven lines for which there is no fibration without cycles and the connectivity of which remains
open, as it is displayed in the tables. So for all the remaining 14 arrangements, we prove the
connectivity of the corresponding tiling sets for any tiling size.

By contrast, sets of unitary tilings are connected for any codimension lesser than 4. Indeed,
we proved by systematic numerical exploration of sets of unitary tilings of codimension lesser
than 3 that there always exists an acyclic fibration in this case.

In order to prove the connectivity for the tiling problems for which all fibrations exhibit
cycles, we would have to prove that one can always break the cycles by type-I flips (see
figure 3). This means that there exists a sequence of flips which brings the tiling from
any disconnected fibres to a connected one. Then one can change the parts of the tiles of
previous cycles by type-II flips, and bring back the tiling to another component of the initial
disconnected fibre. We have not established a possibility to break those cycles in all cases,
and therefore the connectivity problem remains open.

In principle, the arguments developed in this section can be extended to any D → d tiling
problem using arrangements of hyper-planes in the projective space PR

d−1 provided one knows
their classification for fixed D and d. In appendix A, we prove connectivity for codimension
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Figure 11. Typical fractions of cyclic tilings (when they are not equal to zero) as a function of
boundary size. The curves with squares, diamond and circles are the measured ones, whereas the

others are fits with 1 − (1 − α)20p3
. We represent only some cycle fractions for 6 → 3 tilings for

visibility.

2 tilings of any dimension. Note that independently of this work, and after introducing a new
and different formalism, Chavanon and Rémila quite recently also established connectivity in
codimension 2 [37].

5.3. Abundance of cyclic base tilings; mean-field argument and numerical studies

We now present numerical results on the abundance of cyclic base tilings of dimension 3
as a function of their boundary size, as well as a mean-field argument to account for these
results. In this section, we focus on diagonal tilings: pa = p for any a. For unitary tilings,
we completely cover the configuration space (by using a deep search algorithm), therefore the
results are exact. For larger tilings, we numerically sample the tiling configuration space by
using the Monte Carlo Markovian dynamics described in section 3.

We have made this numerical investigation for all the tiling problems corresponding to
six- and seven-line arrangements, with one particularized line of index λD+1 corresponding
to eD+1 to orient the base tilings. The typical cycle abundance we found is displayed in
figure 11. For all the tiling problems for which we prove that cycles cannot exist we effectively
never find them. For the other ones, we find cycles and their occurrence increases rapidly with
the tiling size p for all cases with a similar law. The differences come from that cycle existence
does not arise at the same size for all those tiling problems. In particular, cycles do not exist
in unitary 5 → 3 tilings (exact result) and they appear starting from p = 2. For 6 → 3 tilings
for which there exist cycles in the unitary case, the cycle fraction is already close to 1 for
p = 5. These results show that when cycles can exist in a tiling problem, they are certainly
very frequent for tilings at large size p. Indeed, if a small cycle appears in a small tiling, it
will be likely to appear locally in a large one which can be seen in a first approximation as a
juxtaposition of nearly independent smaller tilings.

Following this idea, we now propose a mean-field argument to account for these results.
For a tiling problem in which cycles are possible, we suppose that there is a non-zero probability
α that a tile belongs to a cycle. If all the tiles are considered as independent, the probability
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that no tile belongs to a cycle in the whole tiling is then (1 − α)NT and the fraction of cyclic
tilings reads

1 − (1 − α)NT . (3)

This supposes that α is independent of the tiling size. It is necessarily false since we have
seen that in some cases cycles appear only starting from a given size. But one can consider
it a good approximation for large sizes. The fits of the measured fraction of cyclic tilings
by this simple law reproduce correctly the results in all the cases, see figure 11. A summary
of these fits is given in tables 3 and 4. We mention that tiling problems based on the same
line arrangement but with a different particularized line λD+1 are not necessarily different. In
particular, the six fibrations of the 6 → 3 tiling problem corresponding to the first six-line
arrangement are all equivalent because all six lines play the same role with respect to the five
remaining ones. They are represented by the same α in table 3.

Concerning the connectivity problem one can see that there remain only three open
cases. One of them corresponds to the first arrangement of six lines and so to the icosahedral
symmetry. Note that it can bias the issue of few results on the fractions of cyclic base 6 → 3
tilings in table 4. Indeed, the corresponding base tiling sets might be disconnected and our
Monte Carlo sampling might be incorrect. These three concerned cases are indicated in bold
face in the table.

5.4. Structure of the configuration space

We now make a brief incursion into graph theory and order theory. The configuration space
can be seen as a graph G, the vertices of which represent tilings, and the edges of which
represent single flips: given two tilings t1 and t2, (t1, t2) is an edge of G if t1 and t2 differ
by (only) one single flip (see figure 6). We prove that this graph G can be embedded in
a high-dimensional hyper-cubic lattice L, thus generalizing results previously specialized to
plane octagonal tilings [16], even in the possible case where G is not connected.

As an immediate corollary, we demonstrate that this graph can be given a structure of
graded partially ordered set (graded ‘poset’) [38]. Indeed a partial-order relation is associated
below with the iterated partition-on-tiling process. Saying that this poset is graded means that
there exists a rank function r on configurations such that if t1 covers (i.e. is just above) t2 then
r(t1) = r(t2) + 1. This rank function is simply the sum of the (integral) coordinates of a tiling
in the lattice L. This order has unique minimal and maximal elements.

The present point of view is applicable to tiling sets of any dimension d and codimension
D − d.

5.4.1. Structure of the graph. We first prove that the configuration space can be seen as a
graph GD embedded in a high-dimensional hyper-cubic lattice LD . We proceed by induction
on the codimension D − d, for any fixed dimension d.

In codimension 1, the tilings are encoded by hyper-cubic partitions. The coordinates of a
tiling are simply the Kd+1 parts xk, k = 1, . . . , Kd+1, of its associated partition and a tiling is
therefore naturally represented by a point of integral coordinates in a hyper-cubic lattice Ld+1

of dimension Kd+1. A flip is encoded by an increase or decrease of the corresponding part by
one unit and thus it corresponds to an edge of the hyper-cubic lattice.

Suppose now that the above property holds for the graph GD . A D + 1 → d tiling t is
encoded by both a D → d base tiling t̃ and a generalized partition on this base tiling. By
hypothesis, the base tiling is encoded by KD integral coordinates xk, k = 1, . . . , KD . We
denote by yl , l = 1, . . . , K ′ the parts of the partition. We now demonstrate that if t is encoded
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by the coordinates (x1, . . . , xKD
, y1, . . . , yK ′), then GD+1 is embedded in a lattice LD+1 of

dimension KD+1 = KD + K ′.
The only subtlety comes from the fact that the indices l must be correctly chosen with

respect to the base tiling t̃ , so that GD+1 is globally embedded in a hyper-cubic lattice (and not
only locally), as it is already discussed in [16] in the special case of octagonal tilings. We do
not reproduce the ideas of this reference which cannot be easily generalized.

A tile of any base tiling t̃ is defined as the intersection of d de Bruijn surfaces. The de
Bruijn families are indexed by a1, . . . , ad and in each family a, the surface is indexed by qa . A
tile is now indexed by the 2d indices (a1, . . . , ad, qa1 , . . . , qad

) independent of t̃ . We simply fix
an arbitrary one-to-one correspondence between these indices and the indices l = 1, . . . , K ′,
independent of the tiling t̃ .

Now that we have defined the integral coordinates of a tiling, we only need to check that
both type-I and type-II flips respect the lattice structure, that is to say they correspond to an
increase or a decrease of (only) one coordinate by one unit.

Type-II flips do not affect the base tiling (the xk are unchanged) whereas they change
exactly one yl by ±1; type-I flips concern the base tiling only: they change one xk by ±1 and
d + 1 tiles of the base tiling move. Since the flip is possible, they all bear the same part value
before the flip. After the flip, these part values remain unchanged. Since the tiles involved in
the flip bear the same indices l before and after the flip, the coordinates yl remain unchanged.
To sum up, either one xk or one yl (and only one) is increased or decreased by one unit when
a flip is achieved.

5.4.2. Structure of graded poset. When GD is connected by flips, as far as the order structure
is concerned, the previous results ensure that GD has a structure of graded poset inherited
from the order structure of LD: a tiling t1 is greater than a tiling t2 if all the coordinates of t1
are greater than the corresponding coordinates of t2 in LD . The rank function r(t) is simply
the sum of the coordinates of t in the lattice LD . The minimum tiling is obtained when all the
parts are set to 0. The maximum tiling is obtained when all the parts are set to their maximum
possible value. The same kind of result is also established in [37] in codimension 2.

To close this section, note that the existence of the rank function r makes, in principle,
possible the application of the technique developed in [17] to calculate numerically the entropy
of tilings with a given edge orientation, as soon as the configuration space is connected by
flips.

6. What about more physical free-boundary tilings?

In [17], it is discussed that the fixed boundaries we consider in the present paper are not
physical. The aim of the present section is to clarify how our results can be transposed to
free- (or periodic-) boundary tilings which are more realistic models of quasicrystals. We
argue that flip dynamics in fixed-boundary tilings is relevant to flip dynamics in free-boundary
ones provided one focuses on their central regions, where they forget the influence of their
polyhedral boundary.

Since [12], it is known that fixed zonotopal boundaries have a strong influence on rhombus
tilings. This boundary sensitivity has been widely studied in two dimensions (see references
in [17]) and recently numerically explored in 4 → 3 tilings [10, 17]. This spectacular effect
is generically known as the ‘arctic phenomenon’, which means that at the large size limit,
constraints imposed by the boundary ‘freeze’ macroscopic regions near the boundary. In
these frozen regions, the tiling is periodic, contains only one tile species, and has a vanishing
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entropy. By contrast, the remaining ‘unfrozen’ regions contain random tilings with several tile
species and have a finite entropy per tile. In the two-dimensional hexagonal case, the unfrozen
region is inscribed in an ‘arctic circle’. The tiling is not homogeneous inside this circle and
presents an entropy gradient.

By contrast, in 4 → 3 tilings filling a rhombic dodecahedron, it has been numerically
established that the unfrozen region is an octahedron [10, 17], inside which the tiling is
homogeneous and the entropy per tile is constant. In other words, inside the octahedron, the
tiling is a free-boundary one. This octahedron contains 2/3 of the tiles.

In [17], it is argued that this qualitative difference between two- and three-dimensional
tilings is related to the entropic repulsion between de Bruijn lines and surfaces. In dimension 2,
it is favourable to bend de Bruijn lines because the bending cost is smaller than the entropy
gained by moving lines away. The reverse holds in dimension 3 for de Bruijn surfaces: they are
not forced away from their flat configuration and they remain stacked in the octahedron. It is
anticipated in [17] that the same kind of result holds in higher codimension three-dimensional
D → 3 tilings: if the de Bruijn surfaces are not forced away from their flat configuration,
there should be a large macroscopic central region where all de Bruijn families are present, are
flat at large scale, and form a free-boundary D → 3 tiling, thus forgetting the presence of the
polyhedral boundary. For example, a simple calculation shows that in diagonal icosahedral
tilings, this region contains about 42% of the tiles.

In this icosahedral case, locally jammed clusters of tiles associated with cycles and likely to
affect the flip dynamics necessarily belong to this free-boundary-like central region, because
peripheral zones are of lower codimension and cannot contain cycles. As a consequence,
these jammed configurations also exist in free- or periodic-boundary tilings, with all their
implications, and are not specific to fixed boundaries. If they affect the dynamics, it will
certainly also be true in free-boundary tilings, especially in large size ones.

For the same reasons, in the following, we study vertex self-diffusion in this central region:
the initial positions of the vertices are chosen in a very small central sphere and we check that
their distance to the centre never exceeds a finite fraction (∼50%) of the tiling shortest radius.
We have argued that we effectively study self-diffusion in tilings free from the non-physical
influence of fixed polyhedral boundaries. Below, we compare the diffusion constant in this
central region of fixed-boundary icosahedral tilings with the similar constant in tilings with
periodic boundaries [21]. We find an excellent agreement, which corroborates that the tiling
in the central region is effectively a free- (or equivalently periodic-) boundary one and which
reinforces our analysis.

7. Vertex self-diffusion

In this section, we study vertex self-diffusion in rhombohedra tilings. Even though self-
diffusion is only one way of characterizing flip dynamics among many possible ones, we have
chosen to focus on this observable because of its physical interest (see section 8 and the end
of this section for a discussion on other quantities of interest related to flip dynamics).

7.1. Physical motivation

Indeed, single flips have a counterpart at the atomic level [39, 40] which is a new source of
atomic mobility as compared to usual mechanisms in crystals. Consecutively, flip-assisted
atomic self-diffusion has been anticipated as a transport process specific to quasicrystalline
materials [24] which is susceptible to play a role in their mechanical properties, even if it
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remains controversial whether or not flip-assisted self-diffusion is dominant as compared to
usual mechanisms [41].

In addition, quasicrystals present a sharp brittle–ductile transition well below their melting
transition (for a review, see Urban et al [42]), which is related to a rapid increase of dislocation
mobility [25]. Note that the latter does not seem to be directly associated with any phason
unlocking transition because the phason faults dragged behind a moving dislocation are
not healed immediately (neither above or below the transition) and the friction force on a
dislocation due to the trailing of phason faults should not vary significantly at the brittle–
ductile transition [43]. However, dislocation movement by pure climb [43–45] requires the
diffusion of atomic species over large distances. Therefore dislocation mobility is also directly
related to atomic self-diffusion.

Here we study the diffusion of vertices in tilings. As it was first established in [24], one
must focus on diffusion of vertices rather than diffusion of tiles because tiles cannot travel
long distances under flip sequences. Diffusion of vertices is a first approximation before a
more realistic and refined approach taking into account atomic decorations of tiles. But the
possible effects of cycles we want to address here are already present at the scale of tiles and
we shall not consider atomic decorations in this paper.

We demonstrate that cycles do not have any significant influence on self-diffusion, both
at the qualitative and quantitative levels.

7.2. Numerical results

Our purpose here is not an exhaustive study of vertex self-diffusion that was already done in
[21], but rather to check that cycles have no significant influence on flip dynamics, at least as
far as vertex diffusion is concerned. We also focus on diagonal tilings.

We implement our numerical study as follows. We consider the Monte Carlo Markovian
dynamics described in section 3. The unit of time is set to a number of Monte Carlo steps
equal to the number of vertices in the tiling and is called a Monte Carlo sweep (MCS). We
start with a tiling made by flat and equally spaced de Bruijn surfaces. We equilibrate it during
a time τ estimated at the end of this subsection. Typically, for a tiling of size p = 20 that we
present here, the equilibration time τ is of order 105 MCS. As we explained it above, we then
choose a small central cluster of vertices i, the position ri(t) of which we follow as a function
of time. The number of vertices in the central cluster is around 4000 for p = 20 whereas the
tiling contains more than 105 vertices. We compute the mean square displacement averaged
over all vertices and all samples: 〈(r(t) − r(0))2〉.

As anticipated from [21], this quantity grows like t at large time, indicating a diffusive
regime, whatever the edge orientation we choose, as displayed in figure 12. We comment on
these numerical results at the end of the section, after clarifying some technical points.

First of all, the diffusion constant κ depends not only on the codimension and on the
equivalence class of edge orientations, but also on the precise choice of these orientations
in a given equivalence class, since there is some liberty of rotating and elongating the
vectors ea in a same class. There is no obvious way in the general case of particularizing a
reference orientation in a given class. The only case where it is possible is the first six-line
arrangement, for which edges pointing towards the vertices of a regular icosahedron maximize
the symmetry. To smooth the differences between orientation vectors inside an equivalence
class, we normalize the mean square displacement by the typical square distance s2 = 〈�r2〉
covered by the vertices at each step.

In addition, the mean square displacement exhibits a transition regime before the diffusive
one because of short-time correlations. This regime stops around 〈(r(t) − r(0))2〉/s2 ∼ 1.
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Figure 12. Normalized mean square displacement of vertices in 6 → 3 tilings (left) and 7 → 3
tilings (right) with p = 20. The 7 → 3 line arrangements l = 1 and l = 4 correspond to tilings
without cycles in any fibrations, whereas the l = 2 and l = 6 ones correspond to tilings with cycles
in all fibrations. The line arrangement l = 9 corresponds to the intermediate case where cycles are
present in some fibrations but not all of them. For all line arrangements we find normal diffusion
after a transient.

One can interpret the duration of this transient regime as the typical time τ0 between two
uncorrelated flips [21]. Indeed, a vertex just being flipped can only be flipped again to its
initial position at the next step. To have larger distances covered by a vertex, the flip of
this vertex has to be followed by a collective sequence of vertex flips around it. During this
sequence, the vertex can go to a new flippable configuration. This collective succession of flips
should take a time of order τ0. This time τ0 is found to lie between 500 and 1000 MCS in all
the cases studied here. A vertex can be seen as a standard random walker making independent
steps of typical length s every τ0 MCS and κ ≈ s2/τ0.

The diffusion constants we find after normalization do not depend much on the
codimension and the class of edge orientations, which indicates that cycles have no clear
influence on vertex diffusion. However, the normalized diffusion constants we find for
different edge orientations in a same equivalent class show that this normalization is not
sufficient. The order of magnitude of the differences between these diffusion constants in
a same equivalence class is of the same order as those between different classes. So we
are not able to compare quantitatively the differences in the diffusive dynamics between two
classes. However, we can display quantitative results in the case of icosahedral symmetry
where orientation vectors are well defined. In this case, we find normal diffusion with not a
normalized diffusion constant κ = 0.0012, which is very close to that found in [21] in the
case of periodic-boundary tilings.

But again, the aim of this study was more to observe the possible fundamental differences
in flip dynamics between tilings with and without cycles. In particular to check if anomalous
diffusion arises in tilings with cycles. The results shown in figure 12 present no anomalous
diffusion whatever the tiling problem we are considering. They also show that the diffusion
constants are of the same order of magnitude in the three cases: (i) no cycles in any fibration;
(ii) cycles in some fibrations but not all of them; (iii) cycles in all fibrations (in which case the
connectivity remains open).

As a conclusion, cycles do not seem to have any significant influence on diffusive
properties of vertices. We naturally expect that large tilings inherit this diffusive behaviour,
and that vertices display the same diffusive dynamics in free-boundary tilings related to real
quasicrystals, as is argued in the previous section.
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To close this section, we mention that the study of diffusion enables a rough estimate of
ergodic times in tiling sets. We recall that the ergodic time τ of a Markovian process is the
typical time the process needs to reach stationarity, in other words to be likely to have reached
any configuration with nearly equal probability. A time scale can be associated with vertex
diffusion, and is related to the approach of stationarity: it is the typical time needed by a
vertex to explore the whole tiling, namely τ ∼ p2/κ for a tiling of typical radius p. This time
is compatible with known ergodic times in dimension 2 [34, 26] and in 4 → 3 tilings [10].
Since κ does not depend much on the line arrangement, neither does this typical time τ .

8. Conclusion and discussion

This paper studies sets of three-dimensional (and higher) tilings by rhombohedra endowed
with local rearrangements of tiles called elementary flips or localized phasons. It uses a coding
of tilings by generalized partitions which turns out to be a powerful tool to prove connectivity
by flips in a large variety of cases. These results answer positively (even though partially) an
old conjecture of Las Vergnas [27]. The general idea of the proof is as follows: consider a
tiling problem of codimension c. We intend to prove the connectivity of its configuration space
Gc. The generalized partition-on-tiling point of view provides a natural decomposition of G
into disjoint fibres above a base. The base is the configuration space Gc−1 of a tiling problem
of codimension c − 1. Therefore if it can be proven inductively that the latter configuration
space Gc−1 is connected and that all fibres are connected, the overall connectivity of Gc

follows.
So far, attempts of proofs of connectivity have failed because of the possible existence of

cycles in generalized partition problems. As it is discussed in the paper, these cycles block
locally some types of flips, the proof of connectivity of fibres a priori fails and the simple
iterative proof of overall connectivity fails in its turn. What we demonstrate in this paper is
that this problem can be bypassed in a large majority of cases because, in general, there exists
one way of implementing the generalized partition (one ‘fibration’) so that it does not generate
cycles. As a consequence, fibres are connected. Since it can also be proven inductively that
the base is connected, the overall connectivity can be established.

We say ‘a large majority of cases’ because the result depends on the choice of edge
orientations. Indeed, we address in this paper the implications in random tiling theory
and quasicrystal science of this issue. For example, besides the usual orientation of edges
associated with the icosahedral symmetry, there exist three additional non-equivalent choices
of edge orientations for codimension 3 tilings. This means that we consider tilings with
the same number of different tile species (namely 20), but the four sets of tile species are
all non-equivalent in the sense that the tilings they generate cannot be put in one-to-one
correspondence. It happens that cycles exist only in the icosahedral case but cannot exist in
the three remaining cases. As a consequence, the only codimension 3 case where we cannot
establish connectivity is the icosahedral one. Similarly, there are 11 non-equivalent edge
orientations in codimension 4 and we prove connectivity in all of them except 2.

The counterparts of cycles at the tiling level are jammed clusters of tiles that are more
difficult to break by flips than the remainder of the tiling because some types of flips are locally
absent. It was legitimate to anticipate that they might be responsible for entropic barriers and
slow down flip dynamics. We have chosen to address the possible effects of cycles on flip
dynamics from the angle of vertex self-diffusion because it is a key issue at the physical
level. We prove in this paper that there exist tiling problems of the same codimension with
(i) no cycles in any fibration; (ii) cycles in some fibrations but not all of them; (iii) cycles
in all fibrations. Connectivity holds in cases (i) and (ii) and remains open in case (iii). We
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compared self-diffusion in the three cases, and we did not detect any significant effect such as
a sub-diffusive regime. Therefore even if cycles break connectivity in case (iii), they do not
affect significantly the diffusive properties of physical interest.

The tilings considered here have non-physical fixed boundaries. However, we have argued
that a macroscopic central region of tilings is not influenced by the boundary and can therefore
be considered as a free-boundary one. This central region contains the jammed clusters of
tiles due to cycles. As a consequence, they are not specific to fixed-boundary tilings. We
concentrated our attention on this region. We concluded that our results can be transposed to
free-boundary random tilings which are more realistic models of quasicrystals.

Beyond diffusive properties, flip dynamics can be characterized by the calculation of
ergodic times (the times needed to reach stationarity in the flip Markovian process). We have
not addressed this question in the paper. The only conclusion which we can draw is that a
diffusive behaviour is compatible with ergodic times quadratic in the system size. This point
will have to be clarified in the future, but beyond numerical techniques, the methods to tackle
this point ought to be invented. The standard methods in this field cannot easily be adapted
because of the existence of cycles which make impossible the calculation of these times in
fibres that are not connected.

Another issue that is not addressed in this paper is the influence of energy interactions
between tiles at finite temperature. More realistic tiling models take into account a tile
Hamiltonian (reminiscent of interactions at the atomic level) that favours a quasicrystalline
order at low temperature. We intend to analyse the effects of cycles in this context in a future
work.

To finish with, we mention that the possible influence of cycles can be quantified on other
observables than vertex self-diffusion. For example, we have explored in a preliminary work
how the parts Xu converge towards their average value. The part value in the generalized
partition formalism is an indication of the position of a tile in the tiling. A deviation in the
limiting values would mean that some tiles do not easily find their equilibrium positions in the
tiling. It would be a manifestation of ergodicity (or even connectivity) breaking. In general
the convergence is rapid. However, we have observed in rare circumstances in the case (iii)
above that these values do not converge exactly to their expected equilibrium limit. But in the
state of progress of this work, it would be premature to draw any conclusion because we are
not yet able to distinguish definitively between a real effect and statistical noise. This work is
in progress.

More generally, even if cycles do not perturb the physical properties related to diffusion,
we have not excluded the possible occurrence of ergodicity (or even connectivity) breaking
due to cycles in icosahedral random tilings, which are related to real quasicrystals. It could
have important consequences on physical properties related to flip dynamics but not directly
to diffusion, such as relaxation of the structure after a mechanical perturbation (e.g. healing of
phason faults behind a dislocation) or a quench. Indeed even if it is always possible to break
tiles in a real quasicrystal to bypass a possible locking due to cycles, such a process requires
one to pass an energy barrier, which might become difficult at low temperature. Moreover,
ergodicity breaking would have dramatic consequences in Monte Carlo simulations based on
flip dynamics.
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Appendix A. Connectivity of codimension 1 and 2 tiling sets in any dimension

In this appendix, we prove connectivity of sets of codimensions 1 and 2 rhombus tilings of
any dimension d. In codimension 1, the proof is immediate since such tilings are coded
by (acyclic) hyper-solid partitions [15] and since we prove in appendix B that they are
consequently connected. In codimension 2, we also use a proof by monotony as in section
5, even if we do not work directly on hyper-plane arrangements in the projective space
PR

d−1. Note that all edge orientations are equivalent in any dimension and codimensions 1
and 2 [46]2.

We code d + 2 → d tilings as generalized partitions on d + 1 → d codimension 1 tilings.
For the sake of convenience, we identify R

d with the hyper-plane Hd of R
d+1 of equation∑

xi = 0 and we choose the d + 1 vectors ea as follows:

e1 = (−d, 1, . . . , 1),

e2 = (1,−d, 1, . . . , 1),

...
...

... (A.1)

ed = (1, . . . , 1,−d),

ed+1 = (−1,−1, . . . ,−1, d).

The (d + 2)th orientation which orients base d + 1 → d tilings is chosen as

ed+2 = (−1 + ε,−1 + ε2, . . . ,−1 + εd, d − (ε + · · · + εd)), (A.2)

where ε is a small positive parameter. This choice is a convenient one among (non-degenerate)
others because all edge orientations are equivalent in codimension 2 [46]. A face of a base
tiling t̃ is oriented accordingly to ed+2. Now we exhibit precisely the orientation of each face
species.

A face species is defined by d − 1 edge orientations among the d + 1 possible ones. We
denote by a and b, a < b, the two indices of the edge orientations that do not define a face
species, and by Fab this face species. We also denote by gab the vector normal to the faces
Fab. A simple calculation shows that

gab = (0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0), (A.3)

where the non-zero coordinates are in positions a and b. We define ĝab = +gab when b �= d +1
and ĝab = −gab when b = d + 1. Then ed+2 · ĝab > 0 for any a and b: a face Fab is oriented
positively in the direction ĝab.

In addition, ed+1· ĝa,d+1 > 0 for any a < d + 1, which proves that ed+2 and ed+1 are
companion vectors, which in turn proves the monotony of the de Bruijn indices qd+1 with
respect to the order between tiles. The connectivity follows as in section 5.

Appendix B. Connectivity of a fibre when the base tiling is acyclic

In this section, we demonstrate that when a base tiling (or more generally a generalized
partition problem) is acyclic, the corresponding fibre is connected. We prove that any partition
x can be connected to the minimum partition z where all parts are set to 0.

We proceed by induction on the sum σ(x) of the parts of x. Suppose the result holds for
all x such that σ(x) � σ0. Consider a partition y with σ(y) = σ0 + 1.

2 The proof is based upon an argument of duality in the context of oriented matroid theory that is beyond the scope
of this paper.
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Among all the parts of y bearing non-zero parts, consider a minimal one with respect to
the order between parts. Such a part exists because of the acyclic character of the partition
problem. Set this part to 0 by successive single flips. The so-obtained partition y ′ is connected
to z because σ(y ′) � σ0, which proves that y is connected by flips to z.
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